### **MVDC** Distribution Systems

#### Dr. Norbert Doerry & Dr. John Amy Jr. ASNE Advanced Machinery Technology Symposium (AMTS) 2018 Philadelphia PA March 28-29, 2018

# Setting the Scene

"In FY2030, the DON plans to start building an affordable followon, multi-mission, mid-sized future surface combatant to replace the Flight IIA DDG 51s that will begin reaching their ESLs [Estimated Service Life] in FY2040."

Report to Congress on the Annual Long-Range Plan for Construction of Naval Vessels for FY2015

Big differences from DDG 51:

- High-energy weapons and sensors
- Flexibility for affordable capability updates



Photo by CAPT Robert Lang, USN (Ret), from site http://www.public.navy.mil/surfor/swmag/Pages/2014-SNA-Photo-Contest-Winners.aspx

## High Energy Mission Systems Integration Challenge



Ships cannot support High Power Systems without modifications to the ship's Electric Power System and other ship systems

#### **MVDC** Reference Architecture



# Topics

- Electrical Power System Concept of Operations (\*)
- MVDC Bus Capacity
- Cable and Bus Duct
- Cable Shielding
- Voltage Regulation and Bus Stability (\*)
- Dual Output Generators (\*)
- Creepage and Clearance

#### (\*) Discussed in paper, but not in this presentation

# **MVDC Bus Capacity**

- Determining bus segment required capacity is challenging
  - Depends on source and load configurations
- Details Generally not available in early stage design



# Determining MVDC bus capacity

- Total Generation
  - Sum of rated current of all PGMs that can connect to the bus
  - Very conservative
  - Very easy to calculate
  - No information on loads required
- Longitudinal Distribution of Generation
  - For each segment, the larger of the sum of generation on each end of the segment
  - Still conservative
  - Very conservative in end zones
  - No information on loads required



### Determining MVDC bus capacity (continued)

- Limiting Load Flow
  - For each segment, calculate the maximum current flow that could occur in each direction, then use the bigger.
    - Take smaller of Generation forward and Load Aft
    - Take smaller of Generation aft and load Forward
    - Take the larger of the two
  - Load values should be the maximum value of the load aggregation for sizing the power system equipment (zonal load factors for example)
  - Still conservative, but does not require detailed knowledge of loads
- Load Flow
  - For each segment, calculate the maximum current flow for all possible load and generation configurations.
  - Very computational sensitive worst case configuration rarely obvious.
  - Requires considerable modeling of correlated loads
  - Provides least conservative results.



# Cables and Bus Duct

- Need to control magnetic fields
  - Magnetic Signature
  - Residual Fields



# Magnetic Signature



(b) 2 conductors

# Magnetic Signature (Continued)



### **Residual Magnetism**



#### **Cable Inductance**



(c) 4 conductors flat



# **Cable Shielding**

- Individual conductor shields
  - Ground at one end
  - Electric Field Control
- Overall Cable conductor
  - Ground at both ends
  - Path for commonmode current



### Creepage and Clearance Definitions

- Creepage distance along the surface of an insulating material is the shortest distance between uninsulated energized parts or between an uninsulated energized part and ground.
- Clearance distance is the shortest point-topoint distance in air between uninsulated energized parts or between an uninsulated energized part and ground.

# Creepage and Clearance Issue

- Dielectric strength of air is about 3 kV/mm.
  - Cannot use 3 kV/mm directly
    - Voltage spikes
    - Humidity
    - Contamination
    - Non-uniform electric fields
- AC guidance based on empirical data
  - Safety factors on the order of 20 to 45
- DC guidance does not exist
  - Physical phenomena are different
  - Electrical environment is different

#### BEST SOLUTION IS TO INSULATE ALL ENERGIZED PARTS

### Creepage and Clearance Interim Guidance

#### CLEARANCE

| 6 kV  | 72 mm  |
|-------|--------|
| 12 kV | 112 mm |
| 18 kV | 153 mm |

#### CREEPAGE

| Main Switchboards and Generators       |                                |  |  |  |  |  |
|----------------------------------------|--------------------------------|--|--|--|--|--|
| Voltage Creepage Distance (mm) for CTI | Creepage Distance (mm) for CTI |  |  |  |  |  |
| 300 V 375 V 500 V >60                  | 00 V                           |  |  |  |  |  |
| 6 kV 113 108 99 90                     | )                              |  |  |  |  |  |
| 12 kV 220 210 194 180                  | C                              |  |  |  |  |  |
| 18 kV 330 315 292 270                  | C                              |  |  |  |  |  |

Other high voltage equipment

Valtere Currence Distance (must) few CTI

| Based on | AC Guidance |
|----------|-------------|
|----------|-------------|

| voitage | Creepage Distance (mm) for CTT |       |       |        |  |  |
|---------|--------------------------------|-------|-------|--------|--|--|
|         | 300 V                          | 375 V | 500 V | >600 V |  |  |
| 6 kV    | 83                             | 80    | 75    | 70     |  |  |
| 12 kV   | 166                            | 160   | 150   | 140    |  |  |
| 18 kV   | 249                            | 240   | 225   | 210    |  |  |
|         |                                |       |       |        |  |  |

CTI = Comparative tracking index as defined in IEC 60112

#### RECOMMENDED ONLY UNTIL BETTER DATA BECOMES AVAILABLE

# Summary

- Electrical Power System Concept of Operations
- MVDC Bus Capacity
  - 4 different methods of calculating
- Cable and Bus Duct
  - Magnet Signature
  - Residual Magnetic Field
  - Inductance
- Cable Shielding
  - Conductor shields single end ground
  - Cable shield both end grounded
- Voltage Regulation and Bus Stability
- Dual Output Generators
- Creepage and Clearance
  - Insulate as much as possible
  - Need better data to establish good MVDC guidance
  - Provided MVDC Guidance, based on AC guidance